

Penetration Test Report

C Y R E X

Prepared for: Jagdeep Sidhu, Syscoin Co-Founder / CTO, Syscoin
Foundation

Prepared by: Tim De Wachter, CTO, Cyrex Ltd

26/11/2021

 2

Table of Contents

Table of Contents 2
Executive summary 3

Penetration test 3
Regression test 3

Conclusion 4
Overall 4
Security Controls 4

Scope of test 5
Fixed recommendations 6
Tested Vulnerability Types 7

Remote Code Execution (RCE) 7
SQL Injection 7
Access Control Flaws 8
Brute Force Attacks 8
Cross-Site Scripting 9
Broken Authentication 9
Information Disclosure 10
Denial of Service (DoS) 10
Business Logic Flaws 10
Unrestricted File Upload 11
Server-Side Request Forgery (SSRF) 11
Improper Session Validation 11
Security Misconfigurations 12
Open Redirect Flaws 12
Improper Input Validation 12
Path Traversal Attacks 13
JSON Injection 13
XML Injection 14
SMTP Header Injection 14
Re-entrancy Attacks 14
Over- & Underflow Attacks 15
Block Gas Limit 15
Frontrunning 15

 3

Executive summary

Penetration test

Cyrex was contracted by the Syscoin Foundation to conduct a penetration test in order
to determine its exposure to a targeted attack. All activities were conducted in a
manner that simulated a malicious actor engaged in a targeted attack against the scope
with the goals of:

- Identifying if a remote attacker could penetrate the scope its defences.
- Determining the impact and possibility of a security breach.

Efforts were placed on the identification and exploitation of security weaknesses that
could allow a remote attacker to gain unauthorized access to organizational data. The
attacks were conducted with all levels of access that a general internet user would
have.

As Syscoin Foundation provided Cyrex the source code, we can label this kind of test as
a white box penetration test. Cyrex was granted access to the application with all
regular user privileges.

Regression test

With the regression testing we make sure the vulnerabilities discovered during the
penetration test are patched in a correct manner and no other vulnerabilities have been
introduced during the patching process.

What follows is a conclusion concerning the overall security maturity of the application
and the tested vulnerability types.

We are confident that the penetration test and this report helps the customer to raise
its security of the Sysethereum bridge to a higher level, this by enforcing the principles
of confidentiality, integrity and availability.

 4

Conclusion

Overall

Cyrex determined that the overall security maturity of this application is great and will
meet the risk appetite of any end user. No vulnerabilities were discovered during the
penetration test. Various suggested recommendations were implemented in a correct
manner but more importantly the smart contracts and related C-code were tested and
validated thoroughly by Cyrex’ application security experts.

Security Controls

Security best practices have been implemented in different parts of the contract. A few
examples of this are changing state before paying currency to avoid re-entrancy, usage
of solidity 8.x to prevent arithmetic underflow or overflows, using of SafeERC20, etc.

Defensive checks have been written throughout the contract. First and foremost, all
inputs are validated using the necessary require-statements. Next to this the result of
call-operations is always checked and corresponding exceptions are raised in case of
failure.

 5

Scope of test

Cyrex performed a penetration test on the Sysethereum bridge, this test was
performed starting the 13th of October 2021 up till and including the 18th of October 2021.

During the penetration test, strict protocols, guidelines and a unique workflow have been
followed. Different frameworks were integrated into this process flow which are in line
with the ethical hacking procedures. The process involved an active analysis of the
application for any weaknesses, technical flaws or vulnerabilities.

During the entire penetration testing life cycle, Cyrex performed the following actions in
order to determine security issues within the application:

1. Analysis and testing of different endpoints
2. Tampering of different parameters within those requests
3. Identification of potential injection points, security flaws and vulnerabilities
4. Exploitation to provide Proof of Concept (PoC)

We are confident the maturity level of the application meets the security requirements
of any end user; therefore, the application can be publicly exposed and be put into a
production environment.

We want to thank Syscoin Foundation for putting trust in our knowhow and expertise
concerning ethical hacking specific to applications.

Fixed recommendations

This section lists all the recommendations that Cyrex determined to be successfully fixed
within the scope of the regression test.

ID Title

SBR002 Declare public functions as external in order to save gas

SBR003
It is not fully clear that the SyscoinERC20 contract should only be used for
testing purposes

 7

Tested Vulnerability Types

The application has been tested for the following types of vulnerabilities:

Remote Code Execution (RCE)

In computer security, arbitrary code execution (ACE) is an attacker's ability to execute
arbitrary commands or code on a target machine or in a target process. An arbitrary
code execution vulnerability is a security flaw in software or hardware allowing
arbitrary code execution. The ability to trigger arbitrary code execution over a network
(especially via a wide-area network such as the Internet) is often referred to as remote
code execution (RCE).

On its own, an arbitrary code execution exploit will give the attacker the same
privileges as the target process that is vulnerable. For example, if exploiting a flaw in a
web browser, an attacker could act as the user, performing actions such as modifying
personal computer files or accessing banking information, but would not be able to
perform system-level actions (unless the user in question also had that access).

SQL Injection

A SQL injection attack consists of insertion or "injection" of a SQL query via the input
data from the client to the application. A successful SQL injection exploit can read
sensitive data from the database, modify database data, execute administration
operations on the database, recover the content of a given file present on the DBMS
file system and in some cases issue commands to the operating system.

SQL injection attacks are a type of injection attack, in which SQL commands are injected
into data-plane input in order to affect the execution of predefined SQL commands.

The main consequences of SQL Injection vulnerabilities are:

- Loss of confidentiality, since the database generally holds sensitive data.
- No limitation to authentication
- No limitation to authorization and privileges
- Loss of integrity due to modification of data

 8

Access Control Flaws

Within the application’s core security mechanisms, access controls are logically built upon
authentication and session management. The application needs a way of deciding
whether it should permit a given request to perform its attempted action or access the
resources that it is requesting.

Access controls are a critical defence mechanism within the application because they
are responsible for making these key decisions.
When they are defective, an attacker can often:

• Compromise the entire application
• Take control of administrative functionality
• Access sensitive data belonging to every other user.

Broken access controls are among the most commonly encountered categories of web
application vulnerabilities.

Brute Force Attacks

A brute force attack can manifest itself in many different ways, but primarily consists in
an attacker configuring predetermined values, making requests to a server using those
values, and then analysing the response. For the sake of efficiency, an attacker may use
a dictionary attack or a traditional brute-force attack.

Brute-force attacks are often used for attacking authentication and discovering
content/pages within a web application. These attacks are usually sent via GET and
POST requests to the server. In regard to authentication, brute force attacks are often
mounted when an account lockout policy is not in place.

 9

Cross-Site Scripting

XSS is a vulnerability that lets an attacker control some of the content of a web
application. By exploiting a Cross Site Scripting, the attacker can target the web
application users.

By performing an XSS attack an attacker is able to:

• Modify the content of the site at run-time
• Inject malicious contents.
• Steal the cookies, thus the session, of a user.
• Perform actions on the web application as if it was a legitimate user.
• ...

A vulnerable web application is what makes XSS attacks possible.
XSS vulnerabilities happen when a web application uses unfiltered user input to build
the output content displayed to its end users.

This lets an attacker control the output HTML and JavaScript code, thus attacking the
application users.

Broken Authentication

Confirmation of the user’s identity, authentication, and session management are critical
to protect against authentication-related attacks. There may be authentication
weaknesses if the application:

• Permits automated attacks such as credential stuffing, where the attacker has a
list of valid usernames and passwords;

• Permits brute force or other automated attacks.
• Permits default, weak, or well-known passwords, such as “Password1” or

“admin/admin“.
• Uses weak or ineffective credential recovery and forgot-password processes,

such as “knowledge-based answers”, which cannot be made safe.
• Uses plain text, encrypted, or weakly hashed passwords (see A3:2017-Sensitive

Data Exposure).
• Has missing or ineffective multi-factor authentication.
• Exposes Session IDs in the URL (e.g., URL rewriting).
• Does not rotate Session IDs after successful login.
• Does not properly invalidate Session IDs. User sessions or authentication tokens

(particularly single sign-on (SSO) tokens) aren’t properly invalidated during logout
or a period of inactivity.

 10

Information Disclosure

Applications can unintentionally leak information about their configuration, internal
workings, or violate privacy through a variety of application problems. Applications can
also leak internal state via how long they take to process certain operations or via
different responses to differing inputs, such as displaying the same error text with
different error numbers.

Web applications will often leak information about their internal state through detailed or
debug error messages. Often, this information can be leveraged to launch or even
automate more powerful attacks.

Denial of Service (DoS)

The Denial of Service (DoS) attack is focused on making a resource (site, application,
server) unavailable for the purpose it was designed. There are many ways to make a
service unavailable for legitimate users by manipulating network packets, programming,
logical, or resources handling vulnerabilities, among others. If a service receives a very
large number of requests, it may cease to be available to legitimate users. In the same
way, a service may stop if a programming vulnerability is exploited, or the way the
service handles resources it uses.

Sometimes the attacker can inject and execute arbitrary code while performing a DoS
attack in order to access critical information or execute commands on the server.
Denial-of-service attacks significantly degrade the service quality experienced by
legitimate users. These attacks introduce large response delays, excessive losses, and
service interruptions, resulting in direct impact on availability.

Business Logic Flaws

Most security problems are weaknesses in an application that result from a broken or
missing security control (authentication, access control, input validation, etc. …). By
contrast, business logic flaws are ways of using the legitimate processing flow of an
application in a way that results in a negative consequence to the organization.

 11

Unrestricted File Upload

Uploaded files pose a significant risk if not handled correctly. The consequences of
unrestricted file upload van vary, including complete system takeover, an overloaded file
system or database, forwarding attacks to back-end systems, client-side attacks or
simple defacement, dependent on what the application does with the uploaded file and
especially where it is stored.

The impact of this vulnerability is high, supposed code can be executed in the server
context or on the client side. The likelihood of detection for the attacker is high. The
prevalence is common. As a result, the severity of this type of vulnerability is high.

Server-Side Request Forgery (SSRF)

In a Server-Side Request Forgery (SSRF) attack, the attacker can abuse functionality on
the server to read or update internal resources.

The attacker can supply or modify a URL which the code running on the server will read
or submit data to, and by carefully selecting the URLs, the attacker may be able to read
server configuration such as AWS metadata, connect to internal services like http
enabled databases or perform post requests towards internal services which are not
intended to be exposed.

Improper Session Validation

In order to keep the authenticated state and track the users progress within the web
application, applications provide users with a session identifier (session ID or token) that
is assigned at session creation time and is shared and exchanged by the user and the
web application for the duration of the session

Session termination is an important part of the session lifecycle. Reducing to a minimum
the lifetime of the session tokens decreases the likelihood of a successful session
hijacking attack. This can be seen as a control against preventing other attacks like Cross
Site Scripting and Cross Site Request Forgery. Such attacks have been known to rely on
a user having an authenticated session present. Not having a secure session termination
only increases the attack surface for any of these attacks.

A secure session termination requires at least the following components:

• Availability of user interface controls that allow the user to manually log out
• Session termination after a given amount of time without activity (session

timeout).
• Proper invalidation of server-side session state

 12

Security Misconfigurations

Security misconfiguration can happen at any level of an application stack, including the
network services, platform, web server, application server, database, frameworks,
custom code, and pre-installed virtual machines, containers, or storage. Automated
scanners are useful for detecting misconfigurations, use of default accounts or
configurations, unnecessary services, legacy options, etc

Such flaws frequently give attackers unauthorized access to some system data or
functionality. Occasionally, such flaws result in a complete system compromise.

The business impact depends on the protection needs of the application and data.
Attackers will often attempt to exploit unpatched flaws or access default accounts,
unused pages, unprotected files and directories, etc to gain unauthorized access or
knowledge of the system.

Open Redirect Flaws

Open redirect is a security flaw in an app or a web page that causes it to redirect users
to potentially malicious URLs

When apps and web pages have requests for URLs, they are supposed verify that
those URLs are part of the intended pages domain. Open redirect is a failure in that
process that makes it possible for attackers to steer users to malicious third-party
websites. Sites or apps that fail to authenticate URLs can become a vector for malicious
redirects to convincing fake sites for identity theft or sites that install malware.

Normally, redirection is a technique for shifting users to a different web page than the
URL they requested. Webmasters use redirection for valid reasons, such as dealing with
resources that are no longer available or have been moved to a different location.

Improper Input Validation

Input validation is a frequently used technique for checking potentially dangerous inputs
in order to ensure that the inputs are safe processing within the code, or when
communicating with other components. When software does not validate input properly,
an attacker is able to craft the input in a form that is not expected by the rest of the
application. This will lead to parts of the system receiving unintended input, which may
result in altered control flow, arbitrary control of a resource, or arbitrary code execution.

It is important to emphasize that the distinctions between input validation and output
escaping are often blurred, and developers must be careful to understand the difference,
including how input validation is not always sufficient to prevent vulnerabilities, especially
when less stringent data types must be supported, such as free-form text.

 13

Path Traversal Attacks

A path traversal attack (also known as directory traversal) aims to access files and
directories that are stored outside the web root folder. By manipulating variables that
reference files with dot-dot-slash (../) sequences and its variations or by using absolute
file paths, it may be possible to access arbitrary files and directories stored on file
system including application source code or configuration and critical system files.

JSON Injection

JSON injection occurs when data enters a program from an untrusted source, or the
data is written to a JSON stream.

Applications typically use JSON to store data or send messages. When used to store
data, JSON is often treated like cached data and may potentially contain sensitive
information. When used to send messages, JSON is often used in conjunction with a
RESTful service and can be used to transmit sensitive information such as authentication
credentials.

The semantics of JSON documents and messages can be altered if an application
constructs JSON from unvalidated input. In a relatively benign case, an attacker may be
able to insert extraneous elements that cause an application to throw an exception
while parsing a JSON document or request. In a more serious case, such as ones that
involves JSON injection, an attacker may be able to insert extraneous elements that
allow for the predictable manipulation of business-critical values within a JSON
document or request. In some cases, JSON injection can lead to cross-site scripting or
dynamic code evaluation.

 14

XML Injection

XML injection manipulates or compromises the logic of an XML application or service.
The injection of unintended XML content and/or structures into an XML message can
alter the intended logic of an application, and XML Injection can cause the insertion of
malicious content into resulting messages/documents.

With a successful XML Injection attack, the attacker can steal the entire database, or can
even log in as the administrator of the website.

SMTP Header Injection

SMTP header injection vulnerabilities arise when user input is placed into email headers
without adequate sanitization, allowing an attacker to inject additional headers with
arbitrary values. This behaviour can be exploited to send copies of emails to third
parties, attach viruses, deliver phishing attacks, and often alter the content of emails. It is
typically exploited by spammers looking to leverage the vulnerable company's reputation
to add legitimacy to their emails.

This issue is particularly serious if the email contains sensitive information not intended
for the attacker, such as a password reset token.

Re-entrancy Attacks

A reentrancy attack can occur when you create a function that makes an external call
to another untrusted contract before it resolves any effects. If the attacker can control
the untrusted contract, they can make a recursive call back to the original function,
repeating interactions that would have otherwise not run after the effects were
resolved.

There are two main types of reentrancy attacks: single function and cross-function
reentrancy.

Single function reentrancy attack
This type of attack is the simplest and easiest to prevent. It occurs when the vulnerable
function is the same function the attacker is trying to recursively call.

Cross-function reentrancy attack
These attacks are harder to detect. A cross-function reentrancy attack is possible when
a vulnerable function shares state with another function that has a desirable effect for
the attacker.

 15

Over- & Underflow Attacks

The uint overflow/underflow, also known as uint wrapping around, is an arithmetic
operation that produces a result that is larger than the maximum above for an N-bit
integer, or produces a result that is smaller than the minimum below for an N-bit
integer.

Like mileage counters in cars, integers expressed in computers have a maximum value
and once that value is reached they simply turn back to the beginning and start at the
minimum value. Similarly, subtracting 4 from 3 in an unsigned integer will cause an
underflow, resulting in a very large number.

Block Gas Limit

The block gas limit is Ethereum’s way of ensuring blocks don’t grow too large. It simply
means that blocks are limited in the amount of gas the transactions contained in them
can consume. Put simply, if a transaction consumes too much gas it will never fit in a
block and, therefore, will never be executed.

This can lead to a vulnerability that we come across quite frequently: If data is stored in
variable-sized arrays and then accessed via loops over these arrays, the transaction may
simply run out of gas and be reverted. This happens when the number of elements in
the array grows large, so usually in production, rather than in testing. The fact that test
data is often smaller makes this issue so dangerous since contracts with this issue
usually pass unit tests and seem to work well with a small number of users. However,
they fail just when a project gains momentum and the amount of data increases. It is
not uncommon to end up with unretrievable funds if the loops are used to push out
payments.

Frontrunning

Potential frontrunning is probably the hardest issue to prevent on smart contracts.
Frontrunnuing can be defined as overtaking an unconfirmed transaction. This is a result
of the blockchain’s transparency property. All unconfirmed transactions are visible in the
mempool before they are included in a block by a miner. Interested parties can simply
monitor transactions for their content and overtake them by paying higher transaction
fees. This can be automated easily and has become quite common in decentralized
finance applications.

